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The motion of a singular vortex near an
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McDonald (1998) has studied the motion of an intense, quasi-geostrophic, equivalent-
barotropic, singular vortex near an infinitely long escarpment. The present work
considers the remaining cases of the motion of weak and moderate intensity singular
vortices near an escarpment. First, the limit that the vortex is weak is studied
using linear theory. For times which are short compared to the advective time scale
associated with the vortex it is found that topographic waves propagate rapidly away
from the vortex and have no leading-order influence on the vortex drift velocity.
The vortex propagates parallel to the escarpment in the sense of its image in the
escarpment. The mechanism for this motion is identified and is named the pseudoimage
of the vortex. Large-time asymptotic results predict that vortices which move in the
same direction as the topographic waves radiate non-decaying waves and drift slowly
towards the escarpment in response to wave radiation. Vortices which move in
the opposite direction to the topographic waves reach a steadily propagating state.
Contour dynamics results reinforce the linear theory in the limit that the vortex
is weak, and show that the linear theory is less robust for vortices which move
counter to the topographic waves. Second, contour dynamics results for a moderate
intensity vortex are given. It is shown that dipole formation is a generic feature of the
motion of moderate intensity vortices and induces enhanced motion in the direction
perpendicular to the escarpment.

1. Introduction
In the abyssal ocean there are regions where, at least locally, the background

gradient of potential vorticity is dominated by varying topography, rather than the
ubiquitous planetary curvature, or the β-effect as it is often represented in theoretical
models. Of interest to the present study are regions of sharp topographic gradients
such as the mid-Atlantic ridge, or the continental margins. In such regions the
trajectories of eddies, such as those affecting the dispersal of newly formed bottom
water, are expected to depend, to leading order, on the local topographic gradients.
See for example Stern (2000), Beismann, Käse & Lutejeharms (1999) and Richardson
& Tychensky (1998). Atmospheric eddies, such as tropical cyclones are also affected
by sharp topographic gradients such as coastal mountain barriers. Given the potential
damaged caused by cyclones impinging on inhabited areas, the calculation of their
trajectories is an important meteorological question.

† Present address: Department of Aeronautics, Imperial College, Prince Consort Road, London
SW7 2AZ, UK.



336 D. C. Dunn, N. R. McDonald and E. R. Johnson

In a previous study McDonald (1998) investigated the motion of an intense singular
vortex near an escarpment, using quasi-geostrophic f-plane dynamics. The vortex is
defined as intense if the time scale for the vortex circulation is much shorter than
the time scale for topographic wave generation, so that advection of fluid across the
escarpment dominates over topographic wave generation. Under this assumption it
was found that, initially, cyclones propagate away from the deep-water region and
anticyclones propagate away from the shallow-water region. Asymptotic results
showed that eventually cyclones and anticyclones propagate parallel to the escarp-
ment at a speed that decays exponentially with the distance of the vortex from the
escarpment. Moreover the drift speed always matches a possible topographic phase
speed, and non-decaying topographic waves are radiated as a result. The vortex re-
sponds to this radiation by drifting slowly perpendicular to the escarpment. Provided
that they are initially located within about a Rossby radius from the escarpment,
cyclones accumulate at a distance of about 1.2 Rossby radii from the escarpment on
the shallow side. Anticyclones exhibit similar behaviour except that they accumulate
on the deep side of the escarpment.

As well as being important in its own right, the escarpment topography serves
as a useful paradigm for the β-plane. In particular the direction going from deep
to shallow water is analogous to the northwards direction on the β-plane, since
both these directions are in the sense of increasing ambient potential vorticity. The
behaviour of an intense singular vortex near an escarpment is qualitatively the same as
the behaviour of an intense singular vortex on the β-plane, studied by Reznik (1992).
Moreover the same curved trajectories for non-singular, intense β-plane vortices have
been observed in a number of laboratory (e.g. Firing & Beardsley 1976), numerical
(e.g. McWilliams & Flierl 1979; Mied & Lindeman 1979; Lam & Dritschel 2001) and
analytic studies (e.g. Flierl 1984; Sutyrin & Flierl 1994; Reznik, Grimshaw & Benilov
2000).

The aim of the present study is to examine the motion of weak and moderate
singular vortices near an escarpment. It should be noted that there is no analogy of
a weak singular vortex on a β-plane, since the Bessel function structure of a singular
vortex implies that near the vortex centre the swirl velocity becomes arbitrarily large
and advective effects must locally dominate the dispersive effects of β. Recently
Lam & Dritschel (2001) have applied the high-resolution Contour Advective semi-
Lagrangian (CASL) algorithm of Dritschel & Ambaum (1997) to the study of an
initially circular vortex on the β-plane. It was found the moderate vortices undergo
enhanced meridional drift due to dipole formation. Similar behaviour has been
observed for barotropic vortices near an escarpment in recent laboratory experiments
by Zavala Sanson, van Heijst & Doorschoot (2000). It was shown that moderate
intensity anticyclones located on the shallow side of the escarpment are able to
“climb” the topographic gradient, while cyclones located on the shallow side are
“back-reflected”.

The paper is organized as follows. First the motion of a weak singular vortex is
investigated using linear theory. Analytical solutions are found using Fourier analysis.
The results of linear theory are then tested through a contour dynamics investigation.
Second, the motion of moderate intensity singular vortices, for which no analytic
theory is available, is investigated using contour dynamics. It is found that dipole
formation is characteristic for moderate vortex interactions. Finally the conclusions
of the study are presented.
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2. Problem formulation
Shallow-water, quasi-geostrophic motion on the f-plane is governed by the conser-

vation of potential vorticity, which can be written in non-dimensional form as

∂

∂t
(∇2ψ − ψ) + J[ψ,∇2ψ − ψ] + S

∂ψ

∂x

∂hB

∂y
= 0, (2.1)

where the conserved quantity is the quasi-geostrophic potential vorticity,

Q = ∇2ψ − ψ + ShB(y). (2.2)

Here ψ is the streamfunction, t is the time, hB(y) is the topography which is assumed
to only vary in the y-direction and J[f, g] = fxgy +gxfy is the Jacobian. Note that the
form of (2.2) implies that equivalent-barotropic dynamics are assumed. In the context
of the present work this is an attempt to model the stratification of the abyssal
ocean, i.e. a layer of dense fluid lying under a layer of less dense fluid, and where
the interface between the two layers is free to deform. The length scale used in this
non-dimensionalization is the Rossby radius RD = (g′D)1/2/f, where D is the average
depth of the layer containing the vortex, g′ is the acceleration due to the reduced
gravity of the fluid and f is the Coriolis parameter. The non-dimensional time scale
is the eddy turnover or advective time scale, Ta = RD/U = Df/Λ, where Λ is the
scale for the vortex amplitude and U is the typical vortex velocity due to geostrophy.
The parameter S is given by

S =
RD/U

δ−1f−1
=

δ

Ro
=
Ta

Tw
, (2.3)

where δ is the scale height of the topography, so that Tw is the time scale for
topographic wave generation (see, for example, Johnson 1984). The two numbers
δ and Ro are small parameters, but their ratio S may take the whole range of
values. The Rossby number, Ro, is a function of the distance of the vortex from the
escarpment, i.e. the critical velocity U is the velocity induced by the vortex at the
escarpment rather than the absolute value of the circulation. This can be estimated
from the structure of the vortex. For example, in this work, this can be done using
the Bessel function structure of the singular vortex. McDonald (1998) has studied the
case S � 1, where the effect of the topography is relatively weak and the vortex is
said to be intense. The present work considers the remaining cases, S � 1 where the
effect of the topography is strong, i.e. a weak vortex, and S ≈ 1, where the effect of
the topography and the vortex are comparable, i.e. a moderate vortex.

In the absence of topography, i.e. hB(y) = 0, isolated singular vortex solutions to
(2.1) are well known and are

Ψv(x−X, y − Y ) = − Γ
2π
K0

((
(x−X)2 + (y − Y )2

)1/2
)
, (2.4)

where (X(t), Y (t)) is the position of the vortex centre, and K0 the modified Bessel
function of the first kind, order zero. Such solutions are obtained by solving

∇2Ψ −Ψ = Γδ(x−X, y − Y ). (2.5)

The sign of Γ gives the sense of the circulation: for Γ < 0 it is clockwise (anticyclonic)
and for Γ > 0 it is anticlockwise (cyclonic). By integrating (2.1) over all space, and
provided ψ → 0 sufficiently rapidly in the far field, it straightforward to show that
dΓ/dt = 0, i.e. Γ = constant.

The present work considers the initial value problem for a singular vortex in the
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Figure 1. The present problem. (a) A plot of the cross-section of the fluid domain, and the
dimensional variables. The free surface elevation, η is scaled on RofL2 and written ψ; D is
the typical layer depth in the absence of motion, and δ = ∆D/D is half the fractional height of the
topography. (b) The initial condition, which is a vortex (here a cyclone, indicated by +, and with
strength Γ > 0), distance L from the escarpment, which is aligned along y = 0. Shallow water lies
in the half-plane y > 0, and so contains fluid with high ambient potential vorticity.

presence of non-zero topography. Figure 1(a) shows the present choice of topography,
an infinitely long escarpment aligned along y = 0, which can be expressed as

hB(y) = sgn(y). (2.6)

By analogy with the β-plane, shallow fluid lies in the direction of increasing y. For
convenience of description, the direction of increasing y is identified as north, and
increasing x as east. In reality there is no preferential direction on the f-plane, so this
choice is made simply so as to align the isobaths, or potential-vorticity contours, in
the β-plane sense. The fluid motion is strictly not quasi-geostrophic near y = 0, since
there the topography has infinite gradient, so the flow must be three-dimensional
near the escarpment. However, the present choice of topography is an attempt to
model a sudden depth change, ∆D, i.e. the horizontal length scale of the depth change
(say l) is such that RD � l � ∆D. This implies that the vertical velocity scales like
∆D/l � 1, and it is assumed that the three-dimensional effects near the escarpment
are negligible and have no leading-order effect on the dynamics.

Johnson & Davey (1990) have shown that the dispersion relation for the linear
topographic waves (S � 1) in this domain is

ω = − Sk√
k2 + 1

, (2.7)

and the phase and group velocities are given by

cp(k) = − S√
k2 + 1

, (2.8)

cg(k) = − S

(k2 + 1)3/2
, (2.9)
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so both the phase and energy of the waves propagate in the direction of decreasing
x, i.e. with shallow water to the right.

At time t = 0 the vortex has location (X(0), Y (0)) = (0, L), as shown in figure 1(b).
For t > 0 the vortex advects fluid columns across the isobaths, demanding an
associated change in their relative vorticity. This establishes secondary circulations
which advect the primary vortex. The aim is to determine the vortex trajectory
for t > 0, i.e. X(t) and Y (t). In the following sections the solution for a weak
vortex is found by Fourier analysis; the form of the solution also enables a simple
approximation for the mass transport by the vortex to be made. Contour dynamics
simulations are used to investigate the motion of a moderate vortex. Finally the
results and limitations of the present model are discussed.

3. A weak singular vortex
For a weak vortex S � 1. Set ε = S−1 � 1. Seeking a solution of the form

ψ = Ψv(x−X, y − Y ) + φ, (3.1)

the governing equation (2.1) becomes

ε(∇2φ− φ)t + εJ[φ,∇2φ− φ] + εJ[Ψv,∇2φ− φ]
∂φ

∂x

∂hB

∂y
= −∂Ψv

∂x

∂hB

∂y
. (3.2)

3.1. Short-time solution

Introduce the rescaled time variable τ = t/ε, so that the unit of time is the short,
topographic-wave time scale Tw , and denote the solution on this time scale by φ0. For
τ� O(ε−1) the advection term in (3.2) is negligible, so for times up to τ = O(ε−1),

(∇2φ0 − φ0)τ +
∂φ0

∂x

∂hB

∂y
= −∂Ψv

∂x

∂hB

∂y
, (3.3)

which is a linear, forced topographic wave equation, the forcing being due to the
vortex. On this time scale the vortex drift velocity components are O(ε), and advection
of the vortex is by the regular φ0-field so that

dX

dτ
= − ε∂φ0

∂y

∣∣∣∣
x=X,y=Y

, (3.4)

dY

dτ
= ε

∂φ0

∂x

∣∣∣∣
x=X,y=Y

. (3.5)

Hence, for times up to τ = O(ε−1), X = O(ε) and Y = L+ O(ε), and the vortex term
is, to leading order

Ψv = Ψv(x, y − L), (3.6)

on this time scale. Also ∂hB/∂y = 2δ(y) so away from y = 0 (3.3) is

∇2φ0 − φ0 = 0. (3.7)

The topography is ‘switched on’ near a pre-existing vortex at τ = 0, i.e the initial
condition is

φ0(x, y, 0) = 0. (3.8)

The boundary conditions are

∇φ0 → 0, x2 + y2 →∞, (3.9)
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[φ0] = 0, y = 0, (3.10)[
φ0yt

]
+ 2φ0x = −2Ψvx(x,−L), y = 0, (3.11)

where [.] denotes the jump of the enclosed quantity across the escarpment. Condition
(3.9) is the requirement that the fluid be at rest far from the escarpment, while (3.10)
and (3.11) are obtained by integrating the governing equations across the escarpment.
Similar linear initial-boundary value problems for the escarpment topology have
previously been considered by, among others, Johnson (1985), Johnson & Davey
(1990) and McDonald (1992, 1996), where details of the derivation of the boundary
conditions and the solution procedure can be found. The solution to this problem is
obtained through standard Fourier transform methods. It is straightforward to show
that the solution consists of a steady term and a topographic wave term,

φ0 = φ
(s)
0 + φ

(w)
0 , (3.12)

where

φ
(s)
0 =

Γ

2π
K0

((
x2 + (|y|+ |L|)2

)1/2
)
, (3.13)

and

φ
(w)
0 = − Γ

2π

∫ ∞
0

A(k, y) cos(kx− ωτ) dk, (3.14)

with

A(k, y) =
exp

(−(|y|+ |L|)√k2 + 1
)

√
k2 + 1

. (3.15)

In obtaining (3.13) an identity from Gradshteyn & Ryzhik (1980, p. 498), has been
used. At τ = 0 the topographic wave term φ

(w)
0 cancels with the steady term φ

(s)
0 ,

giving the correct initial condition.

3.1.1. The steady term

The steady term φ
(s)
0 is reminiscent of an image of the vortex in the escarpment

y = 0. Note however the important distinction: if L < 0 then Ψv + φ
(s)
0 vanishes for

y > 0 and similarly if L > 0 then Ψv + φ
(s)
0 is zero for y < 0. Thus the fluid on the

same side of the escarpment as the vortex feels the effect of an image vortex in the
escarpment, whereas the fluid across the escarpment from the vortex is undisturbed
with respect to the steady term, Ψv + φ

(s)
0 . For this reason the steady term, φ(s)

0 , is

dubbed the pseudoimage of the vortex. The streamlines of Ψv + φ
(s)
0 are shown in

figure 2.
The role of the pseudoimage in the following theory is vital. In the contour

dynamics investigations described below, it will be seen that the behaviour of the
vortex is predicted well by the pseudoimage description for many eddy turnover times.
It should be emphasized that the pseudoimage has a definite physical meaning. It
is part of the topographic wavetrain, a wavetrain which is initially excited by the
circulation of the vortex pushing fluid across the escarpment. It is non-dispersive and
remains localized near the vortex, is even in y, and is not singular anywhere. The
magnitude of the relative vorticity associated with the disturbance φ(s)

0 is precisely that
required to advect the vortex as if the escarpment were a plane wall. Importantly, it
will be shown that the dispersive topographic waves rapidly propagate away from the
vortex, and have no influence on it for times τ→ ε−1, i.e. for large times the advection
of the vortex is due solely to its pseudoimage. The properties of the dispersive waves
are discussed next.
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Figure 2. Streamlines for the steady term ψstat. The vortex has unit strength and is located at
(0, 1). The contour interval is 0.01, and the position of the escarpment is indicated by the solid line.
Note the closed streamlines on the side of the escarpment occupied by the vortex. The fluid on the
opposite side is undisturbed.

3.1.2. The topographic wave term

The unsteady part of the solution φ
(w)
0 given by (3.14) is a Fourier superposition

of topographic waves. The amplitude is maximum over y = 0, coinciding with the
escarpment. The dispersion relation is given by (2.7) and the phase and group velocities
are given by equations (2.8) and (2.9) respectively.

Standard asymptotic methods are employed to deduce the large-time behaviour of
φ

(w)
0 , as in Johnson (1985). The integrand in (3.14) is analytic, so the only contributions

to the integral as τ→ ∞ come from the points of stationary phase (see, for example,
Bender & Orszag 1978). In the present case there is only one point of stationary
phase, which occurs for −τ < x < 0, and is given by

ks =
(
(−ξ)−2/3 − 1

)1/2
, (3.16)

where ξ = x/τ. It is straightforward to show that

φ
(w)
0 ≈ Γ√

2π
exp

(
−(|y|+ |L|)√k2

s + 1
)( 1

3τξks

)1/2

cos
(
ksx− ωsτ− π

4

)
, (3.17)

where ωs = −ks(ks + 1)−1/2. The solution φ
(w)
0 decays like τ−1 for any fixed x and it

decays like τ−1/2 for any fixed ξ = x/τ, −1 < ξ < 0.
The stationary phase approximation breaks down at the point x = −τ, correspond-

ing to the point of maximum group velocity ω′′(k) = c′g(k) = 0. Following Lighthill
(1974), a third-order expansion of the phase gives, near x = −τ, as τ→∞

φ
(w)
0 ≈ Γ

2

e−(|y|+|L|)

(3τ/2)1/3
cos τ Ai

(
− x− τ

(3τ/2)1/3

)
, (3.18)
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Figure 3. (a) Plot of φ(w)
0 evaluated over y = 0. Times are τ = 10 (solid curve) and τ = 60 (dashed

curve). (b) The wave term evaluated at the vortex centre as a function of τ. In each case Γ = 1, i.e.
an anticyclone, and the solution has been scaled by 2π. See text for further comments.

where Ai is the Airy function (see Abramowitz & Stegun 1972 for details). Thus,
φ

(w)
0 decays exponentially for x < −τ and oscillates for x > −τ. The amplitude

of this maximum oscillation at the wavefront decays like τ−1/3, and the wavefront
approximation smoothly matches the topographic waves to the undisturbed fluid
ahead of the train (see Lighthill 1974 for details). The wave term evaluated over
y = 0 is illustrated in figure 3(a) at two different times, τ = 10 and 60. The plot is
obtained by numerical integration of (3.14). The westward propagating topographic
waves are evident. The maximum disturbance at the wavefront coincides with the
x-location of the vortex. The magnitude of this maximum amplitude decreases with
time. It is also evident that the amplitude of the disturbance at x = 0 decreases more
rapidly than the maximum amplitude of the wavetrain.

Of particular interest is the influence of the waves at the vortex centre. The wave
amplitude decays most rapidly at the x-location of the vortex centre, and this can be
seen as follows. There are no points of stationary phase for x = 0. Equation (3.14)
evaluated at the vortex centre is

φ
(w)
0 (0, L, τ) = − Γ

2π

∫ ∞
0

exp
(−2|L|√k2 + 1

)
√
k2 + 1

cos
kτ√
k2 + 1

dk. (3.19)

Writing ξ = k/
√
k2 + 1 this may be rewritten

φ
(w)
0 (0, L, τ) = − Γ

2π

∫ 1

0

h(ξ) cos ξτ dξ, (3.20)
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where

h(ξ) =
exp

(
−2|L|/√1− ξ2

)
√

1− ξ2
. (3.21)

The hypotheses of the Riemann–Lebesgue Lemma (e.g. Bender & Orszag 1978) are
satisfied and so the integral in (3.20) decays like τ−1 as τ→∞. Hence, the influence of
the waves on the vortex decreases algebraically for large τ. Figure 3(b) shows a plot
of the response at the vortex centre, and has been obtained by numerical integration
of (3.19).

Importantly, as τ → ε−1 the waves have no influence on the vortex drift velocity.
The trajectory of the vortex centre on the topographic wave time scale is considered
in detail in the next subsection.

3.1.3. Short-time vortex trajectory

First consider times τ� 1. The solution (3.12) is, to leading order in τ,

φ0 ≈ −Γτ
2π

∫ ∞
0

ωA(k, y) sin kx dk, (3.22)

as τ → 0. The pseudoimage term cancels with the cos kx term in the expansion of
the wave term, and so the pseudoimage has no leading-order effect on the vortex at
initial times. The vortex velocity components given by (3.4) are then

dX

dτ
= 0, (3.23)

dY

dτ
= −εΓτ

2π

∫ ∞
0

ωkA(k, L) dk. (3.24)

The integral in (3.24) converges, since |A(k, y)| < e−k , and, moreover, is negative, since
ω is negative for k > 0. Hence, for τ � 1 the vortex moves with velocity increasing
linearly in time, in the y-direction. Cyclones (Γ > 0) drift north and anticyclones
(Γ < 0) move south, regardless of the sign of L.

For times 1 � τ < ε−1. The topographic waves have propagated away and have
no influence on the vortex. Then, the advection of the vortex is due solely to the
pseudoimage. From equations (3.4) and (3.5)

dX

dτ
= εu,

dY

dτ
= 0, (3.25)

where

u =
Γ

2π
K1(2|L|)sgnL. (3.26)

Anticyclones (Γ < 0) move west (resp. east) in shallow (deep) water. Cyclones (Γ > 0)
move east (resp. west) in shallow (deep) water. Bell (1989) and Stern & Flierl (1987)
find that weak barotropic (i.e. ‘log’) vortices near a potential-vorticity interface due
to piecewise-constant shear flow also exhibit this behaviour.

To understand the physical mechanism responsible for the drift of the vortex,
consider figure 4. This plot shows the evolution of the streamlines associated with
the φ0-field, for Γ = −1, i.e. an anticyclone. In figure 4(a), the streamlines of the
short-time solution given by equation (3.22) are plotted. The initial response is the
establishment of a secondary dipole, centred over the escarpment and with its axis
aligned along the y-axis. This is the result of the anticyclone drawing fluid to its
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Figure 4. The advection of the vortex, here an anticyclone shown by the black dot, by the regular
field. (a) Evaluation of φ at τ = 0+, by equation (3.22). The contour values have been scaled by
τ/2π. Note the initial advection is south, along the dipole axis. (b) φ evaluated at τ = 4 and (c)
at τ = 7, from equation (3.12). (d) The pseudoimage term, the regular field as τ → ∞. The dashed
contours are negative φ0. See text for further comments.

west from the deep side of the escarpment, and pushing fluid to its east away
from the shallow side of the escarpment. The vortex moves south along the dipole
axis.† These secondary circulations, induced by the circulation of the primary vortex,
diminish rapidly, as energy is lost to the topographic waves. This process is clear in
figure 4(b, c), which show the rapid westward propagation of the topographic waves,
away from the vortex centre. The final frame, figure 4(d ), shows that as τ → ∞
all that remains is the non-dispersive pseudoimage term. Note also that the simple
structure of the solution enables an approximation for the mass transport due to the
pseudoimage. See Meleshko et al. (1992) for details concerning the calculation of the
size of a dipole atmosphere. Note in particular that the mass transport is related to
the distance of the vortex from the escarpment.

This behaviour is in contrast to the motion of an intense singular vortex near an
escarpment. McDonald (1998) showed that intense cyclones move northwest, while

† This is precisely the initial response for an intense vortex near an escarpment and on a β-plane.
In those cases however the strong circulation of the vortex rotates the dipole axis before the initial
disturbance can disperse as topographic waves, causing the southwest (northwest) curved trajectories
for anticyclones (cyclones).
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intense anticyclones move southwest. Importantly, both cyclones and anticyclones
approach a steady westward drift velocity that matches a possible topographic-wave
phase velocity, so that wave radiation must eventually become an important factor
in the motion of the vortex. In the present weak limit this is not always the case
as, for instance, shallow-water cyclones and deep-water anticyclones move east, i.e.
antiparallel to the topographic waves. The large-time response of the vortex is the
subject of the following section.

3.2. Large-time solution

The adjustment on the short, topographic-wave time scale is assumed to happen
instantaneously on the advective time scale. That is, the large-τ asymptotic steady
solution of the previous subsection is taken as the initial condition for the slower,
advective adjustment. Denote by φ1 the solution to (3.2) on the advective time scale.
The two solutions are then matched by demanding that

lim
t→0+

φ1 = lim
τ→∞φ0 = Ψv(x, |y|+ |L|), (3.27)

from equations (3.12), (3.13) and (3.14). For times t � 1, from equation (3.26) the
vortex centre moves with the steady drift velocity X(t) = ut, suggesting a solution of
the form

ψ(x, y, t) = Ψv(x− ut, y − L) + φ1(x, y, t). (3.28)

Note that J[∇2φ0, φ0] = 0 in equation (2.1) and hence, the response is linear as t→ 0+.
It is assumed that this remains the case for finite t. This assumption is justified a
posteriori, by contour dynamics investigations of the full nonlinear problem.

The linear governing equation for φ1 is then

ε
(∇2φ1 − φ1

)
t
+ εJ(Ψv,∇2φ1 − φ1) +

∂φ1

∂x

∂hB

∂y
= −∂Ψv

∂x

∂hB

∂y
. (3.29)

Away from y = 0 this is

∇2φ1 − φ1 = 0. (3.30)

The initial condition is given by (3.27) and the boundary conditions obtained as above
are

∇φ1 → 0, x2 + y2 →∞, (3.31)

[φ1] = 0, y = 0, (3.32)

ε
[
φ1yt

]
+ 2φ1x = −2Ψvx(x− ut,−L), y = 0. (3.33)

It has been assumed that the vortex moves predominantly along the escarpment with
the velocity given by (3.26), i.e. in order to be self-consistent the vortex drift velocity
generated by the solution φ1 should match that given by (3.26). That this is the case

is shown below. Denoting the Fourier transform of φ1 by φ̂1, it is straightforward to
show that

φ̂1(k, y, t) =
Γ

2
√
k2 + 1

exp
(
−(|y|+ |L|)

√
k2 + 1

) 1

ku− ω
(
kue−iωt − ωe−ikut

)
. (3.34)

where

ω = − k

ε
√
k2 + 1

(3.35)

is the topographic wave frequency on the advective time scale. The solution consists
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of a quasi-steady term and a topographic wave term, and can be written

φ1(x, y, t) = φ
(s)
1 + φ

(w)
1 , (3.36)

where

φ
(s)
1 =

Γ

4π

∫
C

exp
(−(|y|+ |L|)√k2 + 1

)
1 + εu

√
k2 + 1

1√
k2 + 1

eik(x−ut) dk, (3.37)

φ
(w)
1 =

Γεu

4π

∫
C

exp
(
(−|y|+ |L|)√k2 + 1

)
1 + εu

√
k2 + 1

ei(kx−ωt) dk. (3.38)

The φ(s)
1 term is a non-dispersive term of the form φ

(s)
1 = φ

(s)
1 (x − ut, y), and so is

a disturbance which propagates with the vortex. To leading order in the binomial
expansion with respect to ε of the integrand this term is the steadily propagating
pseudoimage,

φ
(s)
1 =

Γ

2π
K0

((
(x− ut)2 + (|y|+ |L|)2

)1/2
)
. (3.39)

Moreover the topographic wave term is O(ε), so that the leading-order vortex drift
velocity along the escarpment generated by (3.36) is

dX

dt
= − ∂φ

(s)
1

∂y

∣∣∣∣∣
x=ut,y=L

=
Γ

2π
K1(2|L|)sgnL, (3.40)

i.e. the long-escarpment drift is consistent with (3.26). The large-time drift perpen-
dicular to the escarpment is calculated below.

The second term φ
(w)
1 is a Fourier superposition of topographic waves. The disper-

sion relation is given by (3.35), and so the phase and group velocities are

cp(k) = − 1

ε
√
k2 + 1

, (3.41)

cg(k) = − 1

ε(k2 + 1)3/2
(3.42)

as before. Note that the appearance of ε in these quantities is due to the time scale
being the advective time scale.

Each of (3.37) and (3.38) has simple poles for k = ±γ where

γ =

(
1

ε2u2
− 1

)1/2

, (3.43)

whenever −1 < εu < 0, i.e. whenever the vortex drifts west. In order that the waves
radiate away from the vortex the inversion contour, C , must pass below these poles.
The existence of poles gives rise to the possibility of a steady wavetrain as t → ∞.
There are only two cases to consider since the case u = 0 is of no interest because
there is no vortex, and the cases |εu| > 1 are ruled out, otherwise u is an O(1/ε)
quantity, contradicting the weak vortex assumption which constrains u to be at most
O(1).

(i) 0 < εu < 1
This is the case of either a cyclone located on the shallow side of the escarpment or an
anticyclone located on the deep side of the escarpment, and since 1+εu(k2 +1)1/2 6= 0,
there are no singularities. Thus the inversion contour C may be deformed back to the
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Figure 5. FFT evaluation of the regular solution over y = 0, for a non-radiating weak vortex. The
parameter values used are Γ = −1, ε = 0.1 and L = 0.5. The times are (a) t = 7 and (b) t = 30.

real k-axis. For large t the wave term is dominated by the single point of stationary
phase, occurring for −t < x < 0,

ks =
(
(−εξ)−2/3 − 1

)1/2
, (3.44)

where ξ = x/t. The wave amplitude decays like t−1/2, leaving only the steadily propa-
gating vortex and pseudoimage as t→ ∞. The vortex is moving at a velocity outside
the range of topographic-wave phase velocities, and in particular, since u > 0, is
moving in the opposite direction to the waves. The vortex propagates away from
the wave bundle, which subsequently decays, leaving only the quasi-steady term. The
transient nature of the disturbance is illustrated by fast Fourier transforms (FFT) of
the regular field φ1 over the escarpment (i.e. at y = 0) in figure 5. The large, local-
ized disturbance near the vortex centre is the non-dispersive part of the topographic
wavetrain (i.e. the pseudoimage), while the topographic waves propagate away to the
west, with amplitudes decaying with time. Note that in this case there is no drift of
the vortex perpendicular to the escarpment at large times.

(ii) −1 < εu < 0
This is the case of westward travelling anticyclones located on the shallow side of the
escarpment or cyclones located on the deep side of the escarpment. There are simple
poles in the integrals (3.37) and (3.38) at k = ±γ, given by (3.43). At large times the
solution is dominated by the behaviour near the poles, for which

k ≈ 1

εu
� 1, (3.45)

corresponding to short waves. Also, a simple rearrangement of (3.43) and (3.45)
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Figure 6. FFT evaluation of the regular solution over y = 0, for a radiating weak vortex. The
parameter values used are Γ = +1, ε = 0.1 and L = 0.5. The times are (a) t = 7 and (b) t = 30.
The non-dispersive pseudoimage is evident, and the waves ahead of it are the dispersive wave. The
waves in the wake of the vortex are the steadily propagating radiated waves.

reveals

u = − 1

ε
√
γ2 + 1

= cp(±γ), (3.46)

since u < 0. The asymptotic behaviour is dominated by the short waves with phase
velocities close to the velocity of the vortex. This is not surprising since the vortex
velocity is small, i.e. is O(ε), and hence the motion excites topographic waves with
cp = O(ε) which corresponds to short waves.

A residue calculation (see McDonald 1996 or Dunn 1999 for a full discussion of
this calculation, and particularly of the required inversion contour) then gives the
large-time response for the radiating case,

φ1 ≈ g(y) sin γ(x− ut) [H(x− ut)−H(x− cgt)] , (3.47)

where

g(y) =
Γ

εuγ
exp

(
−|y|+ |L||εu|

)
. (3.48)

This is a wave tube existing for ut < x < cg(γ)t, and whose extent along the
escarpment, say D, grows like the difference of the phase and group velocities of the
radiated waves:

|D| ≈ ε−1t
(
(εu)− (εu)3

)
, (3.49)

since εcg = εc3
p at k = ±γ. Since ε3 is negligible, the rate of growth of the wave

tube is approximately u, the phase velocity of the radiated waves. Figure 6 illustrates
the process of the wave tube formation. Here, the exact linear solution φ1 has
been evaluated from equation (3.36), over the escarpment (y = 0) by fast Fourier
transforms. The waves ahead of the vortex decay. Note also the pseudoimage, i.e. the
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non-dispersive part of the wavetrain which propagates with the vortex. The waves
are radiated from the pseudoimage, which must decrease in size, and which in turn
must affect the vortex drift velocity.

In summary, in the radiating cases (anticyclone located on the shallow side or
cyclone located on the deep side of the escarpment) the topographic waves decay
like t−1/2 except for the particular short waves with wavenumber k = ±γ, which have
phase velocity equal to the vortex zonal drift velocity. A wavetrain of finite length
forms in the wake of the vortex. The trailing edge of this wave train moves at the
group velocity of the radiated waves. Thus there is no disturbance for x > cgt, and in
particular the fluid is at rest at the initial position of the vortex.

Since the radiating waves have non-zero energy flux, they must exert a drag on the
vortex, which in turn must respond to this loss of energy. Bell (1989) argued that a
weak singular barotropic vortex moves perpendicular to a potential vorticity interface
due to wave radiation. In the following section global momentum arguments are used
to calculate the effect of wave radiation upon the vortex drift velocity.

3.3. Large-time vortex trajectory

For the case of an intense singular vortex, McDonald (1998) calculated the response
of the vortex to the radiating waves by equating the energy flux of the wave tube to the
rate of change of the vortex energy to derive an ODE for L, the distance of the vortex
centre from the escarpment. In the present case an analogous equation is obtained
by equating the rate of change of momentum of the vortex to the pseudomomentum
(see McIntyre 1981, Dritschel 1988b; Lam & Dritschel 2001) of the wave tube. This
has the advantage that the calculations are simpler and avoids the infinite energy
associated with a singular vortex; however the momentum and energy flux arguments
are equivalent and yield the same result. The energy density (see e.g. Whitham 1974)
in the wave tube (3.47) is

ρ = 1
2

(
φ̄2

1x + φ̄2
1y + φ̄2

1

)
=

Γ 2

γ2(εu)4
exp

(
−2
|y|+ |L|
|εu|

)
, (3.50)

where the overbar denotes the average over one wave period. Note that by φ1 in this
equation is meant the large-time asymptotic solution given in (3.47). The wave power
(i.e. the total energy flux), P , of the radiated waves is found by integrating ρ over all
y and multiplying the result by the group velocity (Whitham 1974). The ‘appropriate’
group velocity is the rate of growth of the wave tube given by (3.49). This gives the
wave power,

P = Γ 2e−|2L/εu|. (3.51)

The rate of change of the wave pseudomomentum parallel to the escarpment is then
the wave power divided by the phase velocity,

P

εu
=
Γ 2

εu
e−|2L/εu|. (3.52)

This quantity is also the drag on the vortex, which must respond by losing momentum.
See e.g McIntyre (1981). The leading-order x-momentum of the vortex is, by a
generalization of the result for barotropic vortices in Batchelor (1967),

Mx = −
∫∫

y(∇2ψ − ψ) dA = ΓL, (3.53)
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the integral being taken over all space. Note that dΓ/dt = 0 (i.e. conservation of
circulation), so any change in the vortex momentum is manifested only by a change
in L. Taking the time derivative of (3.53) and equating it with the wave momentum
flux (3.52) yields the differential equation for L

dL

dt
=

Γ

2εu
e−|2L/εu|. (3.54)

Alternatively the result (3.54) can also be obtained directly, by calculating the vel-
ocity in the y-direction generated by φ1, by differentiating (3.47) with respect to x
and evaluating the result at the vortex centre. Also u < 0, so both shallow-water
anticyclones and deep-water cyclones drift towards the escarpment in response to
topographic wave radiation. The drift is very slow since

dL

dt
= O(e−1/ε). (3.55)

This might be expected for two reasons. First, the energy density of the radiating waves
is localized near the escarpment. This is evident in the expression (3.50). Second, the
wave energy is concentrated in the long topographic waves which propagate rapidly
away from the vortex centre. Thus, the westward travelling vortices radiate only the
less energetic, short topographic waves. This in turn is a consequence of the weak
vortex assumption, which constrains the vortex velocity to be O(ε) on the topographic-
wave time scale. The topographic waves whose phase speed matches the vortex drift
speed are the short waves.

It has been shown in this subsection that the pseudoimage description of the vortex
motion is valid on the long advective time scale, for as long as linear theory is valid
on that time scale. In the following subsection the validity of the linear theory is
tested numerically by contour dynamics experiments.

3.4. Contour dynamics results

The choice of an infinitely long escarpment for the topography means that the method
of contour dynamics is ideally suited to studying this problem. The contour initially
lies along y = 0, the interface between the shallow and deep water regions, and
after the vortex is switched on at t = 0, it evolves according to potential-vorticity
conservation. The velocity field associated with the deflected contour is used to
advect the vortex. The algorithm used is the quasi-geostrophic generalization of the
algorithm of Dritschel (1988a). Time stepping is done by a fourth-order Runge–
Kutta scheme (∆t = 0.1). The contour nodes are redistributed at each time step
according to local curvature, and surgery, as proposed by Dritschel (1988a), has been
employed at a spatial resolution of µ = 0.15. Several runs were repeated with a finer
resolution of µ = 0.1 producing identical vortex trajectories and topographic contours.
Also, several runs were repeated with no surgery, again resulting in identical vortex
trajectories, with the exception that the number of contour nodes grew rapidly to
become unmanageable.

The contour dynamics algorithm integrates the full nonlinear potential-vorticity
equation (2.1) and is valid for arbitrary deformations of the initial contour. It is
necessary to represent the infinite topographic contour by a finite length in the com-
putations; importantly the contour length must be chosen so that its ends remain
undisturbed during the computations. Given that the time scale employed for the
contour dynamics algorithm is the advective time scale, this is hampered by the
fact that the waves travel rapidly away from the vortex centre and introduce end
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Figure 7. The drift of anticyclonic singular vortices, for 0 < t < 10. The parameter values used are
L = 0.5, ε = 0.1 (dotted line), ε = 0.2 (dashed line) and ε = 0.4 (dot-dashed line). The x-displacement
of the vortex centre is shown in (a) and the path of the vortex centre in (b). The solid line shows
the analytic prediction, calculated from (3.26).

effects during the numerical runs. For small values of ε runs up to t = 10 are
possible before end effects become important, while for moderate to intense vortices
much longer times are possible. Further checks on the accuracy of the algorithm
include use of a vortex of zero strength, an escarpment of zero height, and an
initially disturbed topographic contour in the absence of a vortex. All checks
produced the correct result, and the authors are confident of the accuracy of the
computations.

The main purpose of the contour dynamics investigation is to provide a check on
the results of linear theory for ε → 0. In particular, for what range of values of ε
is the linear theory applicable? Indeed, what is the appropriate time scale for the
applicability of the linear theory? Of further interest is the effect of wave radiation on
the path of the westward travelling vortices. Attention is restricted to the case L > 0,
i.e. to vortices (of both signs) located on the shallow side of the escarpment. There is
no loss of generality here, since the governing equation (3.2) is invariant under the
transformation

ψ(x, y)→ −ψ(x,−y). (3.56)

Analogous results for vortices located on the deep side of the escarpment may be
deduced by symmetry. The behaviour of anticyclones differs from that of cyclones,
and each case is treated separately.
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Figure 8. The evolution of the contour for a weak anticyclone. The parameter values used are
L = 0.5, S = 10 (i.e. ε = 0.1). Note the small-amplitude disturbance, and the non-dispersive
pseudoimage.

3.4.1. Anticyclones

Experiments were carried out for ε = 0.1, 0.2 and 0.4, with L = 0.5 in each case.
Figure 7(a) shows a plot of the vortex zonal drift velocity compared with the linear
theory prediction given in equation (3.26). It is apparent that the prediction of the
zonal drift agrees well with the numerical results, even up to ε = 0.4. Figure 7(b) shows
a plot of the vortex trajectory, again compared with the linear theory prediction. Note
the initial southward movement in all cases presented. This observation is consistent
with the linear theory, which predicts that anticyclones initially move south as the
result of the establishment of a secondary dipole (see the earlier discussion). The
maximum meridional drift of the vortex differs by about 10% from that predicted by
linear theory for ε = 0.4. It is apparent that the linear theory makes a more accurate
prediction of the meridional drift as the parameter is decreased. This is to be expected
as the linear theory is formally only valid in the limit of vanishing ε, and it must be
concluded that there are slight nonlinear effects for the values used in the contour
dynamics simulations.

Figure 8 shows a plot of the evolution of the contour for ε = 0.1. The westward
travelling dispersive waves are evident. Note also the disturbance which propagates
with the vortex, which consists of fluid originally located on the shallow side of the
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Figure 9. As figure 8, except ε = 0.4.

escarpment, and has crossed the escarpment to the deep side gaining net cyclonic
relative vorticity of magnitude 2ε−1. In the limit of small ε the circulation of this
patch has precisely the correct magnitude to advect the primary vortex in the sense
of its pseudoimage in the escarpment. Put another way, the steadily propagating,
non-dispersive ‘pulse’ of cyclonic relative vorticity is the pseudoimage. There is no
visible evidence of topographic wave radiation in this plot, and this observation
is reinforced by the vortex drift, which after the initial southward movement is
predominantly zonal. This may be expected as the wave radiation and subsequent
zonal drift predicted by the theory is too weak to be evident in the plots. Moreover
end effects in the contour prevent runs long enough to observe any significant wave
radiation.

However, consider figure 9, which shows the evolution of the contour for ε = 0.4.
Here, the topographic waves and the pseudoimage are also apparent. Note the
radiating waves, of larger amplitude than for the weaker vortex, in the wake of the
pseudoimage. This behaviour is qualitatively the same as that shown in the FFT plot
of the analytical solution shown in figure 6. Enhanced meridional drift is the response
of the vortex to topographic wave radiation – see figure 7. Given that the vortex
is singular, and so cannot change its shape, escarpment-ward meridional drift is the
only response that the vortex can have to wave radiation.
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Figure 10. The drift of cyclonic singular vortices. The parameter values used are L = 1, ε = 0.1
(dotted line), ε = 0.2 (dashed line) and ε = 0.4 (dot-dashed line). The x-displacement of the vortex
centre is shown in (a) and the path of the vortex centre in (b). The solid line shows the analytic
prediction, calculated from (3.26).

3.4.2. Cyclones

Again experiments were carried out for ε = 0.1, 0.2 and 0.4, with L = 0.5 in each
case. For cyclones the theory predicts that there will be no steady wave radiation in
the wake of the vortex. Figure 10(a) shows a plot of the vortex zonal drift velocity
compared with the linear theory prediction given in equation (3.26). The prediction
is in good agreement with the numerical results for small values of ε, but it is evident
that the linear theory predicts the vortex motion for a smaller range of values of ε
for cyclones than it does for anticyclones. This statement is reinforced in figure 10(b),
which shows the trajectory of the vortex centre. For ε = 0.4 the cyclone has undergone
substantial meridional drift. This cannot be the result of wave radiation, since the
cyclone propagates in the opposite direction to the topographic waves. Therefore, the
meridional drift must be the result of nonlinear effects.

To understand why nonlinear effects are more pronounced for cyclones than
anticyclones consider figure 11, a plot of the evolution of the contour for ε = 0.1. As
for the anticyclones the dispersive topographic waves are evident. The pseudoimage is
also evident, this time consisting of a patch of fluid which had crossed the escarpment
from deep to shallow water, gaining net anticyclonic vorticity, and which, in the limit
ε → ∞, has precisely the right circulation to advect the cyclone as if the escarpment
were a plane wall.
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Figure 11. The evolution of the contour for a weak cyclone. The parameter values used are
L = 0.5, S = 10 (i.e. ε = 0.1).

Next consider figure 12, which shows the contour evolution for a cyclone with
ε = 0.4, and illustrates a fundamental difference between a weak cyclone and a weak
anticyclone. The initial disturbance ‘wants’ to move west, dispersing as topographic
waves. However, in this case the sense of the vortex circulation is such as to counter
this tendency and is sufficiently strong to prevent the initial disturbance from mov-
ing away from the vicinity of the vortex. In contrast an anticyclone reinforces the
westward propagation of the initial disturbance. Figure 12 shows a dipole consisting
of the primary, cyclonic vortex together with the newly formed anticyclonic relative
vorticity, formed by fluid crossing the escarpment. By t ≈ 6 this dipole propagates
northeast, away from the escarpment. It will be shown below that for moderate
intensity cyclones located on the shallow side of the escarpment, the formation of
dipoles is a generic feature.

3.5. Discussion

It has been shown that, in the limit ε→ 0, linear theory predicts that a weak singular
vortex near an escarpment drifts in the sense of its image in the escarpment. While
an explicit definition of a pseudoimage is new, the phenomenon has been noted in
two previous works. Bell (1989) and Stern & Flierl (1987) investigated the motion
of a singular barotropic vortex near a potential vorticity interface and a shear flow
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Figure 12. As figure 11, except ε = 0.4. The vortex centre is indicated by the cross.

respectively, and found that weak vortices move parallel to the interface in the image
sense.

Westward travelling anticyclones (resp. cyclones) located on the shallow (deep) side
of the escarpment radiate short topographic waves as t → ∞. Global momentum
arguments were used to estimate the meridional drift of the vortex centre due to the
wave radiation. This drift is exponentially slow since the energy flux associated with
the short waves is small. It should be emphasized that meridional drift is the only
possible response of a singular vortex to wave radiation, since its shape is fixed.

Contour dynamics experiments have shown that for small ε, linear theory accurately
describes the drift of the vortex centre even beyond its strict range of validity, which
is formally t� O(ε−1). Both anticyclones and cyclone drift parallel to the escarpment
at the velocity due to the pseudoimage. The physical meaning of the pseudoimage was
identified as a non-dispersive patch of relative vorticity in the deflected topographic
contour.

For anticyclones located on the shallow side of the escarpment, linear theory is
accurate up to ε = 0.4 and beyond. The wave-induced meridional drift of the vortex
centre increases with increasing ε, and the amplitude of the radiated waves also
increases with ε.

On the other hand it has been shown that nonlinear effects are important for
cyclones at smaller values of ε. The primary mechanism for the breakdown of the
linear theory for cyclones is the accumulation of anticyclonic relative vorticity near
the vortex centre. This is a result of the circulation of the primary vortex driving fluid
against the preferred direction of the topographic waves. This anticyclonic relative
vorticity is then able, through a dipole mechanism, to advect the primary vortex
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Figure 13. A plot of the trajectories for the moderate intensity anticyclones for 0 < t < 40.
The parameter values used are L = 0.5, S = 2 (dotted line), S = 1 (dashed line) and S = 0.5
(dot-dashed line).

northeast. At large times the cyclone leaves the vicinity of the escarpment, a process
which Zavala Sanson et al. (2000) refer to as ‘back-reflection’. A more thorough
discussion of this phenomenon is given below, in the investigation of the behaviour
of moderate intensity vortices.

4. A moderate singular vortex: contour dynamics results
To complete the study of the motion of a singular vortex near an escarpment,

contour dynamics results are presented in this section for moderate vortices. There is
no theory available for the S ≈ 1 regime, but interesting results are anticipated. This is
particularly so when it is realized that intense vortices propagate ‘west’, regardless of
the sign of the vortex, but weak vortices propagate in opposite directions according to
their pseudoimage. In which direction, therefore, do moderate vortices drift? Attention
is restricted to the cases S = 2 (moderately weak vortex), S = 1 (moderate vortex) and
S = 0.5 (moderately intense vortex). Once again only vortices located on the shallow
side of the escarpment are considered and the cases of anticyclones and cyclones are
considered separately.

4.1. Anticyclones

Figure 13 shows a plot of the trajectories of the moderate anticyclones. For S = 2,
the moderately weak anticyclone appears to still be modelled well by the linear
theory. At large times the drift is purely zonal. For the moderate anticyclone (S = 1),
the initial response also appears to be linear. However the vortex centre later turns
south and crosses the escarpment, traversing a large arc before finally turning east.
The moderately intense anticyclone (S = 0.5) also moves sharply south, crosses the
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Figure 14. Evolution of the contour for an anticyclone with L = 0.5 and S = 2.
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Figure 16. As figure 14 except S = 0.5.

escarpment and turns east at later times, with the exception that the initial westward
displacement is much reduced.

Figure 14 shows the contour evolution for S = 2. The response does indeed appear
linear. The pseudoimage and radiated waves are apparent. It must be concluded that
linear theory predicts the motion of anticyclones even for S = 2 (i.e. ε = 0.5), for at
least forty eddy turnover times.

Next consider figure 15. At short times the topographic waves are linear and the
vortex centre is advected by the pseudoimage. The wave radiation appears strong
enough to cause the vortex to reach and cross the escarpment. At this stage the
vortex begins to wrap the topographic contour, and has a small but significant patch
of cyclonic relative vorticity nearby. The dipole mechanism then turns the vortex from
its westward drift and the vortex centre moves east at large times.

Figure 16 shows the evolution of the contour for S = 0.5. At short times the vortex
wraps the contour up, and then crosses the escarpment. As for the previous case a
patch of cyclonic relative vorticity accompanies the vortex in its evolution and the
dipole mechanism turns the vortex east at later times, but more sharply than for the
S = 1 case, since the relative vorticity acquired by fluid crossing the escarpment is
greater.
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Figure 17. A plot of the trajectories for the moderate intensity cyclones for 0 < t < 30. The
parameter values used are L = 0.5, S = 2 (dotted line), S = 1 (dashed line) and S = 0.5 (dot-dashed
line).

4.2. Cyclones

Figure 17 shows a plot of the trajectories of the moderate cyclones. For S = 2,
the moderately weak cyclone follows a generally northeast path. For the moderate
anticyclone (S = 1), the initial motion is also northeast, but path of the vortex centre
then ‘loops’. However the net migration of the vortex centre is north and east. The
moderately intense (S = 0.5) cyclone exhibits the same behaviour except that the drift
is more east and less north.

Figures 18–20 show the contour evolution for the moderate cyclones. The behaviour
is qualitatively the same in all cases. The cyclone pinches off some of the topographic
contour. This anticyclonic relative vorticity together with the primary cyclonic vortex
form a dipole, and the general migration of the dipole is northeast. In particular the
vortex propagates away from the escarpment, and is only affected by the anticyclonic
patch at later times. The looping motion is characteristic of a dipole composed of
circulations of differing magnitude.

4.3. Discussion

Contour dynamics experiments have shown that for moderate singular vortices the
characteristic of the motion is the formation of dipoles, and curiously, both cyclones
and anticyclones drift east at large times. The process by which this happens differs
slightly for anticyclones compared with cyclones. An anticyclone crosses the escarp-
ment. A large patch of fluid initially located on the shallow side of the escarpment
accompanies the vortex as is crosses the escarpment. This fluid gains cyclonic relative
vorticity, and forms a dipole with the primary vortex. The dipole mechanism curves
the path of the vortex to the east at large times. On the other hand cyclones draw fluid
from the deep side of the escarpment. This fluid develops anticyclonic relative vor-
ticity, and the dipole formation proceeds more quickly than the case of anticyclones.
The cyclones move northeast from the outset, and at large times move away from the
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Figure 18. Evolution of the contour for a cyclone with L = 0.5 and S = 2.

escarpment. The process of dipole formation occurs for cyclones over a larger range
of parameter values than for anticyclones. This was indicated in the discussion of the
weak cyclones, where, even for relatively large values of S the circulation of the vortex
competes with the topographic wave mechanism, causing a buildup of anticyclonic
relative vorticity near the vortex centre.

The results of this subsection can be used to explain aspects of the experimental
results of Zavala Sanson et al. (2000) who have recently investigated the behaviour
of barotropic vortices near an escarpment, both experimentally and numerically. In
that investigation the escarpment lay in the meridional direction on a β-plane. The
β-effect was small in comparison to the topography, and mainly served to bring a
vortex near to the escarpment. The strength of the vortices was of the same order of
magnitude as the relative vorticity produced by fluid crossing the escarpment, or, in
the terminology of the present work, S ≈ 1. It was found that anticyclones situated
on the shallow side of the escarpment were able to ‘climb’ the topographic gradient,
while cyclones were ‘back-reflected’ due to dipole formation, precisely the behaviour
observed in these contour dynamics experiments. The dipole mechanism is sufficiently
strong to overcome the westward drift due to β. In a similar vein, McDonald &
Dunn (2000) used contour dynamics to investigate the motion of a singular vortex
near a seamount (in the present context, an escarpment may be considered to be the
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Figure 19. As figure 18 except S = 1.

limit of a seamount with infinite radius), and found that dipole formation is again a
characteristic of the motion for moderate strength vortices.

Lam & Dritschel (2001) find that maximum meridional displacement of a circu-
lar vortex on a β-plane occurs for moderate intensity vortices. They describe the
mechanism for this process in terms of a ‘trailing eddy’, i.e. a part of the radiated
Rossby wavetrain that has circulation in the opposite sense to the primary vortex. Put
another way, for the moderate intensity β-plane vortex, a dipole forms between the
primary vortex and the shed vorticity. Again, this is precisely the same mechanism
that has been observed in the present case. It might be expected that the robust
dipole formation of the type described here is a frequently occurring phenomenon.
For example, dipole formation maybe extremely important in cross-frontal mixing –
see for example Spall & Chapman (1998).

5. Conclusions
In this paper a study of the motion of an intense singular vortex near an escarpment

has been carried out for the full range of values of vortex intensity. Several important
conclusions may be drawn.
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Figure 20. As figure 18 except S = 0.5.

First, analytic results for a weak vortex have predicted that the escarpment acts
like a plane wall. This phenomenon was dubbed the ‘pseudoimage of the vortex’,
since there is no true image vortex. In the case where the vortex travels in the same
direction as the topographic waves, expressions for vortex drift induced by wave
radiation and based on pseudomomentum arguments were found. This drift is purely
meridional and negligible for times of order unity. Contour dynamics confirmed the
analytical predictions and revealed that the pseudoimage is a steadily propagating,
non-dispersive, patch of relative vorticity in the deflected topographic contour. It
might be anticipated that more realistic models of weak vortices near an escarpment,
or indeed any sharp topographic gradient such as a seamount, might evolve in the
sense of its image in the potential-vorticity interface.

Second, contour dynamics show that dipole formation is generic for moderate
intensity vortices. This is in keeping with experimental results, and directly analogous
to numerically observed dynamics of a vortex on the β-plane. Dipole formation is
important since these structures are robust, stable, nonlinear and are able to travel
rapidly. Hence once formed they will dominate the ensuing dynamics, and as is well-
known this characteristic plays an important role in the transport of passive scalars
such as salt, heat or biota.

Third, there are several aspects of physical vortices which the model does not
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account for. For example, changes in the shape of the vortex may be of great
importance to the dynamics, and as a first step in understanding the evolution of
a continuously distributed vortex near an escarpment, an initially circular patch of
uniform relative vorticity is considered in Dunn (1999) and work by him currently
underway. Further aspects to be addressed in future studies include more complex
topography, the relaxation of the quasi-geostrophic assumption, the effects of the
vertical structure of the vortex and the effect of friction.

The authors dedicate this paper to the memory of trusted friend and colleague,
Rupert Ford, who will be sadly missed, and whose significant contribution to this
work as the PhD examiner of D.C.D. is gratefully acknowledged.

The authors are grateful to the referees for comments which have improved this
paper.
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